Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3900, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724552

RESUMO

By incompletely understood mechanisms, type 2 (T2) inflammation present in the airways of severe asthmatics drives the formation of pathologic mucus which leads to airway mucus plugging. Here we investigate the molecular role and clinical significance of intelectin-1 (ITLN-1) in the development of pathologic airway mucus in asthma. Through analyses of human airway epithelial cells we find that ITLN1 gene expression is highly induced by interleukin-13 (IL-13) in a subset of metaplastic MUC5AC+ mucus secretory cells, and that ITLN-1 protein is a secreted component of IL-13-induced mucus. Additionally, we find ITLN-1 protein binds the C-terminus of the MUC5AC mucin and that its deletion in airway epithelial cells partially reverses IL-13-induced mucostasis. Through analysis of nasal airway epithelial brushings, we find that ITLN1 is highly expressed in T2-high asthmatics, when compared to T2-low children. Furthermore, we demonstrate that both ITLN-1 gene expression and protein levels are significantly reduced by a common genetic variant that is associated with protection from the formation of mucus plugs in T2-high asthma. This work identifies an important biomarker and targetable pathways for the treatment of mucus obstruction in asthma.


Assuntos
Asma , Proteínas Ligadas por GPI , Interleucina-13 , Lectinas , Mucina-5AC , Muco , Asma/genética , Asma/metabolismo , Humanos , Muco/metabolismo , Interleucina-13/genética , Interleucina-13/metabolismo , Lectinas/genética , Lectinas/metabolismo , Mucina-5AC/genética , Mucina-5AC/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Criança , Feminino , Masculino , Células Epiteliais/metabolismo , Polimorfismo Genético , Mucosa Nasal/metabolismo , Mucosa Respiratória/metabolismo , Citocinas
2.
bioRxiv ; 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36909594

RESUMO

BACKGROUND: A subgroup of atopic dermatitis (AD) patients suffer from recurrent, disseminated herpes simplex virus (HSV) skin infections, termed eczema herpeticum (EH), which can be life-threatening and contribute to AD morbidity. The pathobiology underlying ADEH is unknown. OBJECTIVE: To determine transcriptional mechanisms of skin and immune system pathobiology that underlie ADEH disease. METHODS: We performed whole transcriptome RNA-sequencing of non-lesional skin samples (epidermis, dermis) of AD patients with (ADEH + , n=15) and without (ADEH - , n=13) recurrent EH history, and healthy controls (HC, n=15). We also performed RNA-sequencing on plasmacytoid dendritic cells (pDCs) collected from these participants and infected in vitro with HSV-1. Differential expression, gene set enrichment, and endotyping analyses were performed. RESULTS: ADEH + disease was characterized by dysregulation in skin gene expression, which was limited in dermis (differentially expressed genes [DEGs]=14) and widespread in epidermis (DEGs=129). ADEH + -upregulated epidermal DEGs were enriched in type 2 cytokine (T2) ( IL4R, CCL22, CRLF2, IL7R ), interferon ( CXCL10, ICAM1, IFI44 , and IRF7) , and IL-36γ ( IL36G ) inflammatory pathway genes. At a person-level, all ADEH + participants exhibited T2 and interferon endotypes and 87% were IL36G-high. In contrast, these endotypes were more variably expressed among ADEH - participants. ADEH + patient skin also exhibited dysregulation in epidermal differentiation complex (EDC) genes within the LCE, S100 , and SPRR families, which are involved in skin barrier function, inflammation, and antimicrobial activities. pDC transcriptional responses to HSV-1 infection were not altered by ADEH status. CONCLUSIONS: ADEH + pathobiology is characterized by a unique, multi-faceted epidermal inflammation that accompanies dysregulation in the expression of EDC genes. Key Messages: AD patients with a history of recurrent EH exhibit molecular skin pathobiology that is similar in form, but more severe in degree, than in AD patients without this complication. Non-lesional skin of ADEH + patients concurrently exhibits excessive type 2 cytokine, interferon, and IL-36γ-driven epidermal inflammation. Expression of these inflammatory skin endotypes among ADEH + patients is associated with dysregulation in expression of epidermal differentiation complex genes involved in barrier function, inflammation, and antimicrobial activity. Capsule Summary: AD patients with a history of recurrent disseminated HSV-1 skin infections form a unique molecular skin endotype group that concurrently exhibits type 2 cytokine, interferon, and IL-36γ-driven skin inflammation, accompanied by dysregulation in expression of epidermal differentiation complex genes involved in barrier function, inflammation, and antimicrobial activity.

3.
bioRxiv ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38187584

RESUMO

Regulatory DNA sequences within enhancers and promoters bind transcription factors to encode cell type-specific patterns of gene expression. However, the regulatory effects and programmability of such DNA sequences remain difficult to map or predict because we have lacked scalable methods to precisely edit regulatory DNA and quantify the effects in an endogenous genomic context. Here we present an approach to measure the quantitative effects of hundreds of designed DNA sequence variants on gene expression, by combining pooled CRISPR prime editing with RNA fluorescence in situ hybridization and cell sorting (Variant-FlowFISH). We apply this method to mutagenize and rewrite regulatory DNA sequences in an enhancer and the promoter of PPIF in two immune cell lines. Of 672 variant-cell type pairs, we identify 497 that affect PPIF expression. These variants appear to act through a variety of mechanisms including disruption or optimization of existing transcription factor binding sites, as well as creation of de novo sites. Disrupting a single endogenous transcription factor binding site often led to large changes in expression (up to -40% in the enhancer, and -50% in the promoter). The same variant often had different effects across cell types and states, demonstrating a highly tunable regulatory landscape. We use these data to benchmark performance of sequence-based predictive models of gene regulation, and find that certain types of variants are not accurately predicted by existing models. Finally, we computationally design 185 small sequence variants (≤10 bp) and optimize them for specific effects on expression in silico. 84% of these rationally designed edits showed the intended direction of effect, and some had dramatic effects on expression (-100% to +202%). Variant-FlowFISH thus provides a powerful tool to map the effects of variants and transcription factor binding sites on gene expression, test and improve computational models of gene regulation, and reprogram regulatory DNA.

4.
JCI Insight ; 7(13)2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35608904

RESUMO

Chronic type 2 (T2) inflammatory diseases of the respiratory tract are characterized by mucus overproduction and disordered mucociliary function, which are largely attributed to the effects of IL-13 on common epithelial cell types (mucus secretory and ciliated cells). The role of rare cells in airway T2 inflammation is less clear, though tuft cells have been shown to be critical in the initiation of T2 immunity in the intestine. Using bulk and single-cell RNA sequencing of airway epithelium and mouse modeling, we found that IL-13 expanded and programmed airway tuft cells toward eicosanoid metabolism and that tuft cell deficiency led to a reduction in airway prostaglandin E2 (PGE2) concentration. Allergic airway epithelia bore a signature of PGE2 activation, and PGE2 activation led to cystic fibrosis transmembrane receptor-dependent ion and fluid secretion and accelerated mucociliary transport. These data reveal a role for tuft cells in regulating epithelial mucociliary function in the allergic airway.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Animais , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Dinoprostona , Interleucina-13/metabolismo , Camundongos , Sistema Respiratório
5.
Nat Commun ; 11(1): 5139, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046696

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2, an emerging virus that utilizes host proteins ACE2 and TMPRSS2 as entry factors. Understanding the factors affecting the pattern and levels of expression of these genes is important for deeper understanding of SARS-CoV-2 tropism and pathogenesis. Here we explore the role of genetics and co-expression networks in regulating these genes in the airway, through the analysis of nasal airway transcriptome data from 695 children. We identify expression quantitative trait loci for both ACE2 and TMPRSS2, that vary in frequency across world populations. We find TMPRSS2 is part of a mucus secretory network, highly upregulated by type 2 (T2) inflammation through the action of interleukin-13, and that the interferon response to respiratory viruses highly upregulates ACE2 expression. IL-13 and virus infection mediated effects on ACE2 expression were also observed at the protein level in the airway epithelium. Finally, we define airway responses to common coronavirus infections in children, finding that these infections generate host responses similar to other viral species, including upregulation of IL6 and ACE2. Our results reveal possible mechanisms influencing SARS-CoV-2 infectivity and COVID-19 clinical outcomes.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/virologia , Interferons/metabolismo , Interleucina-13/metabolismo , Mucosa Nasal/patologia , Peptidil Dipeptidase A/genética , Pneumonia Viral/virologia , Serina Endopeptidases/genética , Enzima de Conversão de Angiotensina 2 , COVID-19 , Criança , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/patologia , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Variação Genética , Interações Hospedeiro-Patógeno , Humanos , Inflamação , Pessoa de Meia-Idade , Mucosa Nasal/metabolismo , Pandemias , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/metabolismo , Pneumonia Viral/patologia , SARS-CoV-2 , Serina Endopeptidases/metabolismo , Internalização do Vírus
6.
bioRxiv ; 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32511326

RESUMO

Coronavirus disease 2019 (COVID-19) outcomes vary from asymptomatic infection to death. This disparity may reflect different airway levels of the SARS-CoV-2 receptor, ACE2, and the spike protein activator, TMPRSS2. Here we explore the role of genetics and co-expression networks in regulating these genes in the airway, through the analysis of nasal airway transcriptome data from 695 children. We identify expression quantitative trait loci (eQTL) for both ACE2 and TMPRSS2, that vary in frequency across world populations. Importantly, we find TMPRSS2 is part of a mucus secretory network, highly upregulated by T2 inflammation through the action of interleukin-13, and that interferon response to respiratory viruses highly upregulates ACE2 expression. Finally, we define airway responses to coronavirus infections in children, finding that these infections upregulate IL6 while also stimulating a more pronounced cytotoxic immune response relative to other respiratory viruses. Our results reveal mechanisms likely influencing SARS-CoV-2 infectivity and COVID-19 clinical outcomes.

7.
Nat Commun ; 11(1): 2485, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32427931

RESUMO

Cigarette smoke first interacts with the lung through the cellularly diverse airway epithelium and goes on to drive development of most chronic lung diseases. Here, through single cell RNA-sequencing analysis of the tracheal epithelium from smokers and non-smokers, we generate a comprehensive atlas of epithelial cell types and states, connect these into lineages, and define cell-specific responses to smoking. Our analysis infers multi-state lineages that develop into surface mucus secretory and ciliated cells and then contrasts these to the unique specification of submucosal gland (SMG) cells. Accompanying knockout studies reveal that tuft-like cells are the likely progenitor of both pulmonary neuroendocrine cells and CFTR-rich ionocytes. Our smoking analysis finds that all cell types, including protected stem and SMG populations, are affected by smoking through both pan-epithelial smoking response networks and hundreds of cell-specific response genes, redefining the penetrance and cellular specificity of smoking effects on the human airway epithelium.


Assuntos
Células Epiteliais/metabolismo , Perfilação da Expressão Gênica/métodos , Pulmão/metabolismo , Mucosa Respiratória/metabolismo , Fumar/genética , Traqueia/metabolismo , Animais , Células Cultivadas , Técnicas de Inativação de Genes , Redes Reguladoras de Genes , Humanos , Pulmão/citologia , Camundongos , Células NIH 3T3 , não Fumantes/estatística & dados numéricos , Mucosa Respiratória/citologia , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Fumantes/estatística & dados numéricos , Traqueia/citologia
8.
ACS Omega ; 5(13): 7326-7341, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32280874

RESUMO

Munitions compounds (i.e., 2,4,6-trinitrotoluene (TNT), octahy-dro-1,3,5,7-tetranitro-1,3,5,7-tetrazocin (HMX), and hexadydro-1,3,5-trinitro-1,3,5-triazin (RDX), also called energetics) were originally believed to be recalcitrant to microbial biodegradation based on historical groundwater chemical attenuation data and laboratory culture work. More recently, it has been established that natural bacterial assemblages in coastal waters and sediment can rapidly metabolize these organic nitrogen sources and even incorporate their carbon and nitrogen into bacterial biomass. Here, we report on the capacity of natural microbial assemblages in three coastal North Carolina (United States) estuaries to metabolize energetics and phenanthrene (PHE), a proxy for terrestrial aromatic compounds. Microbial assemblages generally had the highest ecosystem capacity (mass of the compound mineralized per average estuarine residence time) for HMX (21-5463 kg) > RDX (1.4-5821 kg) ≫ PHE (0.29-660 kg) > TNT (0.25-451 kg). Increasing antecedent precipitation tended to decrease the ecosystem capacity to mineralize TNT in the Newport River Estuary, and PHE and TNT mineralization were often highest with increasing salinity. There was some evidence from the New River Estuary that increased N-demand (due to a phytoplankton bloom) is associated with increased energetic mineralization rates. Using this type of analysis to determine the ecosystem capacity to metabolize energetics can explain why these compounds are rarely detected in seawater and marine sediment, despite the known presence of unexploded ordnance or recent use in military training exercises. Overall, measuring the ecosystem capacity may help predict the effects of climate change (warming and altered precipitation patterns) and other perturbations on exotic compound fate and transport within ecosystems and provide critical information for managers and decision-makers to develop management strategies based on these changes.

9.
Am J Respir Crit Care Med ; 202(1): 83-90, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32348692

RESUMO

Rationale: Coronavirus disease (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). ACE2 (angiotensin-converting enzyme 2), and TMPRSS2 (transmembrane protease serine 2) mediate viral infection of host cells. We reasoned that differences in ACE2 or TMPRSS2 gene expression in sputum cells among patients with asthma may identify subgroups at risk for COVID-19 morbidity.Objectives: To determine the relationship between demographic features and sputum ACE2 and TMPRSS2 gene expression in asthma.Methods: We analyzed gene expression for ACE2 and TMPRSS2, and for ICAM-1 (intercellular adhesion molecule 1) (rhinovirus receptor as a comparator) in sputum cells from 330 participants in SARP-3 (Severe Asthma Research Program-3) and 79 healthy control subjects.Measurements and Main Results: Gene expression of ACE2 was lower than TMPRSS2, and expression levels of both genes were similar in asthma and health. Among patients with asthma, male sex, African American race, and history of diabetes mellitus were associated with higher expression of ACE2 and TMPRSS2. Use of inhaled corticosteroids (ICS) was associated with lower expression of ACE2 and TMPRSS2, but treatment with triamcinolone acetonide did not decrease expression of either gene. These findings differed from those for ICAM-1, where gene expression was increased in asthma and less consistent differences were observed related to sex, race, and use of ICS.Conclusions: Higher expression of ACE2 and TMPRSS2 in males, African Americans, and patients with diabetes mellitus provides rationale for monitoring these asthma subgroups for poor COVID-19 outcomes. The lower expression of ACE2 and TMPRSS2 with ICS use warrants prospective study of ICS use as a predictor of decreased susceptibility to SARS-CoV-2 infection and decreased COVID-19 morbidity.


Assuntos
Asma , Infecções por Coronavirus , Coronavirus , Pandemias , Pneumonia Viral , Corticosteroides , Betacoronavirus , COVID-19 , Demografia , Humanos , Masculino , Estudos Prospectivos , SARS-CoV-2 , Escarro
10.
Am J Respir Cell Mol Biol ; 63(2): 172-184, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32275839

RESUMO

Air pollution particulate matter <2.5 µm (PM2.5) exposure is associated with poor respiratory outcomes. Mechanisms underlying PM2.5-induced lung pathobiology are poorly understood but likely involve cellular and molecular changes to the airway epithelium. We extracted and chemically characterized the organic and water-soluble components of air pollution PM2.5 samples, then determined the whole transcriptome response of human nasal mucociliary airway epithelial cultures to a dose series of PM2.5 extracts. We found that PM2.5 organic extract (OE), but not water-soluble extract, elicited a potent, dose-dependent transcriptomic response from the mucociliary epithelium. Exposure to a moderate OE dose modified the expression of 424 genes, including activation of aryl hydrocarbon receptor signaling and an IL-1 inflammatory program. We generated an OE-response gene network defined by eight functional enrichment groups, which exhibited high connectivity through CYP1A1, IL1A, and IL1B. This OE exposure also robustly activated a mucus secretory expression program (>100 genes), which included transcriptional drivers of mucus metaplasia (SPDEF and FOXA3). Exposure to a higher OE dose modified the expression of 1,240 genes and further exacerbated expression responses observed at the moderate dose, including the mucus secretory program. Moreover, the higher OE dose significantly increased the MUC5AC/MUC5B gel-forming mucin expression ratio and strongly downregulated ciliated cell expression programs, including key ciliating cell transcription factors (e.g., FOXJ1 and MCIDAS). Chronic OE stimulation induced mucus metaplasia-like remodeling characterized by increases in MUC5AC+ secretory cells and MUC5AC mucus secretions. This epithelial remodeling may underlie poor respiratory outcomes associated with high PM2.5 exposure.


Assuntos
Mucosa Nasal/diagnóstico por imagem , Material Particulado/efeitos adversos , Mucosa Respiratória/efeitos dos fármacos , Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Asma/induzido quimicamente , Asma/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Mucina-5AC/genética , Mucina-5B/genética , Fatores de Transcrição/genética
11.
Sci Transl Med ; 11(480)2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30787169

RESUMO

Skin barrier dysfunction has been reported in both atopic dermatitis (AD) and food allergy (FA). However, only one-third of patients with AD have FA. The purpose of this study was to use a minimally invasive skin tape strip sampling method and a multiomics approach to determine whether children with AD and FA (AD FA+) have stratum corneum (SC) abnormalities that distinguish them from AD without FA (AD FA-) and nonatopic (NA) controls. Transepidermal water loss was found to be increased in AD FA+. Filaggrin and the proportion of ω-hydroxy fatty acid sphingosine ceramide content in nonlesional skin of children with AD FA+ were substantially lower than in AD FA- and NA skin. These abnormalities correlated with morphologic changes in epidermal lamellar bilayer architecture responsible for barrier homeostasis. Shotgun metagenomic studies revealed that the nonlesional skin of AD FA+ had increased abundance of Staphylococcus aureus compared to NA. Increased expression of keratins 5, 14, and 16 indicative of hyperproliferative keratinocytes was observed in the SC of AD FA+. The skin transcriptome of AD FA+ had increased gene expression for dendritic cells and type 2 immune pathways. A network analysis revealed keratins 5, 14, and 16 were positively correlated with AD FA+, whereas filaggrin breakdown products were negatively correlated with AD FA+. These data suggest that the most superficial compartment of nonlesional skin in AD FA+ has unique properties associated with an immature skin barrier and type 2 immune activation.


Assuntos
Dermatite Atópica/diagnóstico , Hipersensibilidade Alimentar/diagnóstico , Pele/patologia , Adolescente , Área Sob a Curva , Criança , Pré-Escolar , Células Dendríticas/metabolismo , Dermatite Atópica/patologia , Epiderme/metabolismo , Proteínas Filagrinas , Hipersensibilidade Alimentar/patologia , Humanos , Proteínas de Filamentos Intermediários/metabolismo , Queratinas/metabolismo , Lipídeos/análise , Microbiota , Pele/microbiologia , Fita Cirúrgica , Transcriptoma/genética , Perda Insensível de Água
12.
J Vis Exp ; (116)2016 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-27805601

RESUMO

A method is described which uses the absence of radiocarbon in industrial chemicals and fuels made from petroleum feedstocks which frequently contaminate the environment. This radiocarbon signal - or rather the absence of signal - is evenly distributed throughout a contaminant source pool (unlike an added tracer) and is not impacted by biological, chemical or physical processes (e.g., the 14C radioactive decay rate is immutable). If the fossil-derived contaminant is fully degraded to CO2, a harmless end-product, that CO2 will contain no radiocarbon. CO2 derived from natural organic matter (NOM) degradation will reflect the NOM radiocarbon content (usually <30,000 years old). Given a known radiocarbon content for NOM (a site background), a two end-member mixing model can be used to determine the CO2 derived from a fossil source in a given soil gas or groundwater sample. Coupling the percent CO2 derived from the contaminant with the CO2 respiration rate provides an estimate for the total amount of contaminant degraded per unit time. Finally, determining a zone of influence (ZOI) representing the volume from which site CO2 is collected allows determining the contaminant degradation per unit time and volume. Along with estimates for total contaminant mass, this can ultimately be used to calculate time-to-remediate or otherwise used by site managers for decision-making.


Assuntos
Carbono , Monitoramento Ambiental , Água Subterrânea , Solo , Dióxido de Carbono , Poluentes Ambientais , Resíduos Industriais , Petróleo
13.
Mon Weather Rev ; 144(9): 3321-3331, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29651170

RESUMO

A first observationally-based estimation of departures from gradient wind balance during secondary eyewall formation is presented. The study is based on the Atlantic Hurricane Edouard (2014). This storm was observed during the National Aeronautics and Space Administration's (NASA) Hurricane and Severe Storm Sentinel (HS3) experiment, a field campaign conducted in collaboration with the National Oceanic and Atmospheric Administration (NOAA). A total of 135 dropsondes are analyzed in two separate time periods: one named the secondary eyewall formation period and the other one referred to as the decaying-double eyewalled storm period. During the secondary eyewall formation period, a time when the storm was observed to have only one eyewall, the diagnosed agradient force has a secondary maxima that coincides with the radial location of the secondary eyewall observed in the second period of study. The maximum spin up tendency of the radial influx of absolute vertical vorticity is within the boundary layer in the region of the eyewall of the storm and the spin up tendency structure elongates radially outward into the secondary region of supergradient wind, where the secondary wind maxima is observed in the second period of study. An analysis of the boundary-layer averaged vertical structure of equivalent potential temperature reveals a conditionally unstable environment in the secondary eyewall formation region. These findings support the hypothesis that deep convective activity in this region contributed to spin up of the boundary layer tangential winds and the formation of a secondary eyewall that is observed during the decaying-double eyewalled storm period.

14.
Environ Pollut ; 174: 257-64, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23287075

RESUMO

2,4,6-Trinitrotoluene (TNT) metabolism was compared across salinity transects in Kahana Bay, a small tropical estuary on Oahu, HI. In surface water, TNT incorporation rates (range: 3-121 µg C L(-1) d(-1)) were often 1-2 orders of magnitude higher than mineralization rates suggesting that it may serve as organic nitrogen for coastal microbial assemblages. These rates were often an order of magnitude more rapid than those for RDX and two orders more than HMX. During average or high stream flow, TNT incorporation was most rapid at the riverine end member and generally decreased with increasing salinity. This pattern was not seen during low flow periods. Although TNT metabolism was not correlated with heterotrophic growth rate, it may be related to metabolism of other aromatic compounds. With most TNT ring-carbon incorporation efficiencies at greater than 97%, production of new biomass appears to be a more significant product of microbial TNT metabolism than mineralization.


Assuntos
Estuários , Trinitrotolueno/metabolismo , Microbiologia da Água , Poluentes Químicos da Água/metabolismo , Azocinas/análise , Azocinas/metabolismo , Biodegradação Ambiental , Biomassa , Havaí , Consórcios Microbianos , Triazinas/análise , Triazinas/metabolismo , Trinitrotolueno/análise , Clima Tropical , Poluentes Químicos da Água/análise
15.
Environ Sci Technol ; 46(16): 8628-36, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22803700

RESUMO

Excitation-emission matrix (EEM) fluorescence was combined with parallel factor analysis (PARAFAC) to model base-extracted particulate (POM) and dissolved (DOM) organic matter quality in the Neuse River Estuary (NRE), North Carolina, before and after passage of Hurricane Irene in August 2011. Principle components analysis was used to determine that four of the PARAFAC components (C1-C3 and C6) were terrestrial sources to the NRE. One component (C4), prevalent in DOM of nutrient-impacted streams and estuaries and produced in phytoplankton cultures, was enriched in the POM and in surface sediment pore water DOM. One component (C5) was related to recent autochthonous production. Photoexposure of unfiltered Neuse River water caused an increase in slope ratio values (S(R)) which corresponded to an increase in the ratio C2:C3 for DOM, and the production of C4 fluorescence in both POM and DOM. Changes to the relative abundance of C4 in POM and DOM indicated that advection of pore water DOM from surface sediments into overlying waters could increase the autochthonous quality of DOM in shallow microtidal estuaries. Modeling POM and DOM simultaneously with PARAFAC is an informative technique that is applicable to assessments of estuarine water quality.


Assuntos
Estuários , Compostos Orgânicos/análise , Rios , Análise Fatorial , Fluorescência , Tamanho da Partícula , Solubilidade
16.
Environ Pollut ; 159(12): 3673-80, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21839558

RESUMO

The nitrogenous energetic constituent, 2,4,6-Trinitrotoluene (TNT), is widely reported to be resistant to bacterial mineralization (conversion to CO(2)); however, these studies primarily involve bacterial isolates from freshwater where bacterial production is typically limited by phosphorus. This study involved six surveys of coastal waters adjacent to three biome types: temperate broadleaf, northern coniferous, and tropical. Capacity to catabolize and mineralize TNT ring carbon to CO(2) was a common feature of natural sediment assemblages from these coastal environments (ranging to 270+/-38 µg C kg(-1) d(-1)). More importantly, these mineralization rates comprised a significant proportion of total heterotrophic production. The finding that most natural assemblages surveyed from these ecosystems can mineralize TNT ring carbon to CO(2) is consistent with recent reports that assemblage components can incorporate TNT ring carbon into bacterial biomass. These data counter the widely held contention that TNT is recalcitrant to bacterial catabolism of the ring carbon in natural environments.


Assuntos
Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Água do Mar/microbiologia , Trinitrotolueno/metabolismo , Poluentes Químicos da Água/metabolismo , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Biodegradação Ambiental , Ecossistema , Sedimentos Geológicos/química
17.
Biodegradation ; 21(2): 257-66, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19760111

RESUMO

Semi-volatile organic compounds (SVOCs) in estuarine waters can adversely affect biota but watershed sources can be difficult to identify because these compounds are transient. Natural bacterial assemblages may respond to chronic, episodic exposure to SVOCs through selection of more organotolerant bacterial communities. We measured bacterial production, organotolerance and polycyclic aromatic hydrocarbon (PAH) mineralization in Charleston Harbor and compared surface sediment from stations near a known, permitted SVOC outfall (pulp mill effluent) to that from more pristine stations. Naphthalene additions inhibited an average of 77% of bacterial metabolism in sediments from the more pristine site (Wando River). Production in sediments nearest the outfall was only inhibited an average of 9% and in some cases, was actually stimulated. In general, the stations with the highest rates of bacterial production also were among those with the highest rates of PAH mineralization. This suggests that the capacity to mineralize PAH carbon is a common feature amongst the bacterial assemblage in these estuarine sediments and could account for an average of 5.6% of bacterial carbon demand (in terms of production) in the summer, 3.3% in the spring (April) and only 1.2% in winter (December).


Assuntos
Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Rios/microbiologia , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Rios/química , Estações do Ano
18.
Can J Microbiol ; 54(8): 687-93, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18772931

RESUMO

The biodegradability and toxicity of low concentrations of oily wastewater (bilgewater) were tested under simulated sanitary wastewater treatment conditions. This was done to establish the feasibility of a combined shipboard oily and nonoily wastewater treatment system. The biodegradability of oily wastewater was determined by proxy; 14C-labeled dodecane, toluene, and phenanthrene (representing alkane, aromatic, and polyaromatic compounds, respectively) were mineralized in petroleum fuels and lubricants. We found that low concentrations of oily wastewater components were mineralized, even in the presence of more abundant substrates (such as synthetic graywater, containing vegetable oil, detergent, gelatin, and starch). The toxic effects of diesel fuel and several other components of oily wastewater (such as surfactants and a synthetic lubricant) on a naïve wastewater assemblage was also tested. In concentrations much higher than would be expected under normal shipboard conditions, we found no evidence of toxic effects of the bilgewater compounds tested. Thus, a combined shipboard bilgewater and sanitary wastewater system might be feasible.


Assuntos
Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Resíduos Industriais/efeitos adversos , Petróleo/metabolismo , Petróleo/toxicidade , Esgotos/efeitos adversos , Biodegradação Ambiental , Reatores Biológicos/microbiologia , Resíduos Industriais/análise , Esgotos/análise , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade
19.
FEMS Microbiol Ecol ; 56(1): 55-63, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16542405

RESUMO

The effects of naphthalene on microbial communities in the bottom boundary layer of the Delaware Bay estuary were investigated in microcosms using denaturing gradient gel electrophoresis (DGGE) and fluorescent in situ hybridization (FISH) with oligonucleotide probes. Three days after the addition of naphthalene, rates of bacterial production and naphthalene mineralization were higher than in no-addition controls and than in cases where glucose was added. Analyses using both DGGE and FISH indicated that the bacterial community changed in response to the addition of naphthalene. FISH data indicated that a few major phylogenetic groups increased in response to the glucose addition and especially to the naphthalene addition. DGGE also demonstrated differences in community composition among treatments, with four phylotypes being unique to naphthalene-amended treatments and three of these having 16S rRNA genes similar to known hydrocarbon degraders. The bacterial community in the naphthalene-amended treatment was distinct from the communities in the glucose-amended treatment and in the no-addition control. These data suggest that polycyclic aromatic hydrocarbons may have large effects on microbial community structure in estuaries and probably on microbially mediated biogeochemical processes.


Assuntos
Bactérias/efeitos dos fármacos , Naftalenos/farmacologia , Microbiologia da Água , Poluentes Químicos da Água/farmacologia , Acinetobacter/efeitos dos fármacos , Acinetobacter/genética , Acinetobacter/metabolismo , Bactérias/genética , Bactérias/metabolismo , Sequência de Bases , DNA Bacteriano/química , DNA Bacteriano/genética , Eletroforese em Gel de Poliacrilamida , Glucose/metabolismo , Hibridização in Situ Fluorescente , Naftalenos/metabolismo , Filogenia , Proteobactérias/efeitos dos fármacos , Proteobactérias/genética , Proteobactérias/metabolismo , Pseudomonas/efeitos dos fármacos , Pseudomonas/genética , Pseudomonas/metabolismo , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , Água do Mar , Análise de Sequência de DNA , Poluentes Químicos da Água/metabolismo
20.
Environ Sci Technol ; 39(24): 9725-31, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16475359

RESUMO

RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) and HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) are cyclic nitramines ((CH2NNO2)n; n = 3 or 4, respectively) widely used as energetic chemicals. Their extensive use led to wide environmental contamination. In contrast to RDX, HMX tends to accumulate in soils due to its unique recalcitrance. In the present study, we investigated the potential of zerovalent iron (ZVI) to transform HMX under anoxic conditions. HMX underwent a rapid transformation when added in well-mixed anoxic ZVI-H2O batch systems to ultimately produce formaldehyde (HCHO), ammonium (NH4+), hydrazine (NH2NH2), and nitrous oxide (N2O). Time course experiments showed that the mechanism of HMX transformation occurred through at least two initial reactions. One reaction involved the sequential reduction of N-NO2 groups to the five nitroso products (1NO-HMX, cis-2NO-HMX, trans-2NO-HMX, 3NO-HMX, and 4NO-HMX). Another implied ring cleavage from either HMX or 1NO-HMX as demonstrated by the observation of methylenedinitramine (NH(NO2)CH2NH(NO2)) and another intermediate that was tentatively identified as (NH(NO2)CH2N(NO)CH2NH-(NO2)) or its isomer (NH(NO)CH2N(NO2)CH2NH(NO2)). This is the first study that demonstrates transformation of HMX by ZVI to significant amounts of NH2NH2 and HCHO. Both toxic products seemed to persist under reductive conditions, thereby suggesting that the ultimate fate of these chemicals, particularly hydrazine, should be understood prior to using zerovalent iron to remediate cyclic nitramines.


Assuntos
Azocinas/metabolismo , Compostos Heterocíclicos com 1 Anel/metabolismo , Ferro/química , Esgotos/microbiologia , Microbiologia do Solo , Poluentes do Solo/metabolismo , Anaerobiose , Compostos de Anilina/metabolismo , Azocinas/toxicidade , Formaldeído/metabolismo , Compostos Heterocíclicos com 1 Anel/toxicidade , Hidrazinas/metabolismo , Ferro/farmacologia , Isomerismo , Nitrobenzenos/metabolismo , Óxido Nitroso/metabolismo , Compostos de Amônio Quaternário/metabolismo , Poluentes do Solo/toxicidade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...